发布单位:天津国电仪讯科技有限公司 发布时间:2022-7-24
扫描式频谱分析仪在瞬态信号方面的表现难尽人意
除非当待测信号刚好同时出现在扫描到的频点,否则待测信号是无法被扫描到的,遗漏的几率非常大。扫描式频谱分析仪很难到一些瞬态信号或者变化较快的异常信号,即使配合maxhold功能记录这段时间扫描到的信号,也会导致部分信号细节被覆盖。与实时频谱分析仪的扫描结果相比(下图8),扫描式频谱分析仪在瞬态信号方面的表现难尽人意。传统扫描式频谱分析仪还可以使用sweptfft模式来处理信号。但是需要先采集一段信号并处理,处理完这段信号后再采集下一段信号,这种模式会存在死区,也很难完整采集到瞬态信号。因此,传统分析仪难以---地获取瞬态信号的频域信息。
矢量信号分析仪采用windows平台便于性能升级和利用其他工
在无线或移动电话的产品开发和产品检验中,矢量信号分析仪可按多种工业标准,对gsm、cdma等的发射机和手机进行严格的精度和动态范围测量。在cdma等通信产品生产中,只利用连续测量是不够的,利用数字调制信号可方便地测出输出功率和失真等重要参数。矢量信号分析仪采用windows平台,容易通过外接微机进行数据处理和交换,windows平台便于性能升级和利用其他工程设计工具,熟识的图形界面可缩短学习时间,留出更多的时间进行测量和应用各种设计及测试工具。
在频谱分析仪上am信号呈现什么波形?
在频谱分析仪上am信号呈现什么波形?图10为am信号在频域和时域的测量结果。在时域中,am调制指数由a和b的大小决定。但是用示波器很难测量调制指数和载波频率。在频域中,很容易测量载波和调制信号的频率。根据载波和边带信号的差值(delta)db以及标记读值,可以计算调制指数。在频率分析仪上fm信号呈现什么波形?时域中的fm信号比am信号更复杂,如图11所示。am信号是幅值调制,而fm信号是频率调制。在fm信号中,频率经调制后以一定偏移量进行扫描,但是该偏移量却在时域很难测量。然而频谱分析仪却能直接显示出载波频率、调制信号频率、偏移量和带宽。
实时频谱分析仪的主要特性
实时频谱分析仪
1.高速测量:频谱仪分析仪的信号处理过程主要包括两步,即数据采样和信号处理。实时频谱仪为了---信号不丢失,其信号处理速度需要高于采样速度。
2.恒定的处理速度:为了---信号处理的连续性和实时性,实时频谱仪的处理速度必须保持恒定。传统频谱仪的fft计算在cpu中进行,容易受到计算机中其它程序和任务的干扰。实时频谱仪普遍采用fpga进行fft计算,这样的硬件实现既可以---高速性,又可以---速度稳定性。
3.频率模板触发(frequency mask trigger):fmt是实时频谱仪的主要特性之一,它能够根据特定频谱分量大小作为触发条件,从而帮助---观察特定时刻的信号形态。传统的扫频式频谱仪和矢量信号分析仪一般只具备功率或者电平触发,不能根据特定频谱的出现情况触发测量,因此对转瞬即逝的偶发信号---为力。因此传统扫频频谱仪和实时频谱分析仪各自有着自己的应用场景。
4丰富的显示功能:传统频谱仪的显示---在频率和幅度的二维显示,只能观察到测量时刻的频谱曲线。而实时频谱仪普遍具备时间,频率,幅度的三维显示,甚至支持数字余辉和频谱密度显示,从而帮助测试者观察到信号的前后变化及长时间统计结果。